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1. Introduction

Many situations in biology, epidemiology, economics and
animal drug studies give rise to data that follow a decay-type
function with time. This is particularly true in biological radiation,
growth and tracer studies. In animal drug studies we have situations
where a specified dose of a drug is administered by rapid intrave-
neous injection to a subject. It is assumed that drug mixes uniformly
and instantaneously into blood. Blood samples are taken at different
time intervals and analysed chemically for drug concentration at
different timings. It was found by Worsiey and Lax[5] that poly
nomial forms do not give a satisfactory fit to such data. The most
widely accepted forms are of the type :

'"-If
y(t) e -}-€(/) (1.1)

vi'here the €(0 are random errors assumed to beindependentwithzero
means and the parameters a,- & are assumed to be non-negative.
In such cases a knowledge of the lime t at which blood samples are
taken, determines an ordering, partial or total, of the corresponding
mean concentrations, £[X0]^'^(0> say.

In most classical approaches to fitting such models, no notice
is taken of the ordered observations. We assume that the regression
functions are subject to order restrictions.

Writing p, = exp(-A,),

m

^(0= Sp/ 4 €(/), .
/=l
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Let the (n+1) observations be denoted by ^(0), j(l), , y(n) for
t=to, <1, tn. In the above case of Wood levels, of drug,

for

£[F(/i)]>£[ya,)], h<ti, i<j,

zj=0, 1, 2, , «.

If there are no order restrictions on E[Y(0)],J=0, IjS, , n, the
weighted least squares estimates of the parameters in (1.2) are
obtained by minimizing,

n

i

where Wi are known or unknown weights.

In this paper we fit these regression functions taking into
account the order restriction. Antitonic estimates are obtained from
basic estimates. Several weighing schemes are examined both on real
and simulated data.

2. Antitonic Regression Over a Simply Ordered Finite Set

In this section we define the various functions involved in
antitonic regression and state some relevant theorems on antitonic
regression. For a comphrehensive survey of antitonic regression, one
may refer to Barlow et al.[\\

2.1. Deflnitions

2.1.1. The estimates obtained by minimizing (1.3) will be called
the basic estimates of the parameters.

2.1.2. Let T be the finite set (/j >'») with the simple

order A real valued function / on T is antitonic if
ti, t, T and ti<tj imply/(f,) >/(<,). Let g be a given function on
T and w a given positive function on T. An antitonic function g on
T is an antitonic regression of g with weights w with respect to the
simple ordering ii<?2<•••</« if it minimizes in the class of antitonic
function on T the sum

Jw(r^)[g(<0 AtdY

and is simply called an antitonic regression ofg.
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'2.2. Graphical and Analytical Procedures

A graphical interpretation of the aptitonic regression is illumi
nating. Assuming the simple ordering we plot the,
cumulative sums

1=1

against the cumulative sums

k

.«=1

...(2.1)

.(2.2)

That is, we plot the points ?»= (W^, Gft);/c=0, 1,2, ...; w,
Po=(0,0). These points constitute the cumulative sum diagram
(CSD) of the giyeni function g with weights iv/; • The slope of the
segment joining Pj-i to P,. is g (h), K=l, 2,..., «. It will be seen that
the antitonic regression of g is given by the slope of the Least
Concave Majorant (LCM) which is the graph of the infimum of all
concave functions vvhose graphs lie above the CSD.. The value of the
ahtiforiic regression g* at' ^ point is just the slope of the.LCM. at
the point P^* with abscissa

'2»<0 ' ' ' " •
/=1

Closely related to the graphical representation of the anlitonic
regression as the slope of the LCM is the Min-Max Formula

g* (/0=min max AV (s, k),

k^i 5<i; I •n ,• • i ^ '

k k

where Av(4',/c) =2g(^) w{tr)/£w(?r).., , .,.(2.4)
r^s r—s

...(2.3)

For numerical illustration 'of these probedures' one may 'refer to
Singh.[4] ' • - i



30 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

\

3. Antitonization of Basic Estimates

If the basic estimates of E[;'(rj)] satisfy the order restrictions,
they are antitonic estimates. If not, we replaces y{ti) by their
antitonic regression estimates y*{ti) with weights Wi. These estimates
will be better than in the sense of least squares. In the case
of exponential family, the antitonic regression of the basic estimate
turns out to coincide with the maximum likelihood estimates under

the order restrictions.

Theorem 3.1
I

Let 7) be an unknown function on a finite set T known, to be
antitonic with respect to a simple order on T. Let w(;), be a set
of positive weights. Let g be an estimate of y). Let g* be the antitonic
regression of g with weights w. Then

Eh w-g* (01^ w(o< 2[-') (0-g(0]^ m ...(3-1)

Proof:

The proof is an immediate consequence of the following inequa
lity, valid for all antitonic •/);

2 'Ko > £ H- (0
t t

+ w(0, ....(3.2)
t

since -q is antitonic and

2 [g io-g* it)]' m>o,

the proof follows.

The piocedure for finding antitonic regression is as follows :
For a given set of observations j'(ri), ;= 0, 1, 2...n, we first determine
antitonic regression y* of >(/,). ^
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Having determined the antitonic regression, the estimates of
parameters Pj and K; in the model (1.2) are determined. Njte that
ccj and Pj are common to each The antitonic estimates ofa; and
9j, are given by minimizing the following,

n m

£ y*{U)- 2 p/i w{tt) .,.(3.3)
/=0

4. Choice of Weighing Scheme

ĵ section we shall investigate three weighing schemes forthe model (1.2) when errors are assumed to be distributed with equal
variances. Let E[e^ (0]=a^ for all In usual least squares
analysis we take w(z^) to be the same for all u's but for the model
under discussion it may not be the best choice. In this model the
coefficient of variation which is an index of the reliability of dala
ra^dly increases with the increase in the value of Uand when
sufficiently large the error component dominates the fixed component

u (depending upon the magnitude ofa) the observations contain almost no information about the para-
me er and pj. In such cases it becomes very essential to have
antitonic weights with respect to the independent variable t.
Obviously the choice of antitonic weights puts miximum reliance on
the initial observations and least reliance on the last observations. If
we isregard that there are mfixed components in the model givco
by equation (1.2) then the simplest antitonic weighing scheme in cast
ti are equi-spaced, is given by

= ...(4.1)
where a is given by

I
a (I —a")

/=o

Hence gjVM the numbei of observations we can nniquel, de,erminetheweiglits to be assigned to each level of/, The above weighing
scheme was found to woric better in many cases and gave consider
ably smaller residual sum of squares over the schemeof equal weights.
If we assume that Pi>p„>,..>p,„ then the contribution of the mth
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component becomes negligible first as the level of t is increased
followed by the next lowest p,„-i component. Finally beyond certain
level of t the contribution of only the slowest moving component is
appreciable. Obviously the increase in the level of t beyond certain
level depending on the magnitude ofslowest moving component does
laot contain much information about the parameters and it is not
advisable to derive a weighing scheme as a function of m. If the p
parameters are well separated in time then the above proposed
weighing scheme is enough. However, if the parameters are not well
separated then we may choose weights directly proportional to the
observed magnitude of observations, i.e.

I w
! = 0

Choice of weights according to equation (4.3) amounts to the
selection of weights approximately inversely proportional.to the coeffi
cientof variationas error variance is assumed to be constant for all t.

5. Examples

In this section we examine the performanceof weighing schemes
described in section 4 after replacing the basic estimates by their
antitonic estimates. Initial estimates of the parameters pj and aj are
obtained by the methods proposed by Singh.[4] Two numerical
examples considered are taken from Cornell[2] and Galambos and
Cornell. [3] Data for the third example are simulated on electronic
computer.

Example 5.1

In order to examine the performance of weighted least squares
estimation with antitonic weights over the ordinary least squares
estimation procedure, we consider the set of a simulated data given
in Table 1 obtained by simulated regression model given in (1.2)
for m=2.
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TABLE 1

Simulated Data

33

t, 0 1 2 3 4 5

y (t) 0.99580 0.86755 0.75378 0.68462 0.58998 0.49S06

t 6 7 8 9 10 11

y (t) 0.49066 0.35738 0.31896 0.32844 0.24684 0.29593

t 12 13 14 15 16 17

y(0 0.18045 0.25398 0.17297 0.16266 0.15076 0.12821

t 18 19 20 21 22 23

y(0 0.12233 0.15341 0.13334 0,09083 0 09683 0.09450

The error mean squares for the iterative least squares estimation were
found by fitting the model (1.2) with and are given below for
the two weighing schemes:

Weighing Scheme Error Mean Squares

Equal Wts 0.000,735,94

Weights tViao^+i 0.000,624,26

That is the reduction in Error Mean Squares is 0.000,111,68 which is
about 18% by using the scheme (4.1).

Example 5.2

The following numerical example illustrated the application of
the model:

< t

.)'(0 = «iPi+ a2P2 + ^(0 ...(5.1)
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using the data of Table 2 given by Corne)l[2]. The observations des
cribe the distribution of background pulses generated in a proportional
counter by neutron interaction with the walls and gas plus pulses due
to circuit noise. The heights t are recorded at equi-spaccd intervals.

TABLE 2

Logarithms y (t) of Frequencies of Pulse Heights t Generated
in a Proportional Counter

t = 0 1 2 3 4 5 6 7

y (t) = 10.430 4.703 2.327 1.140 0,615 0.325 0.170 0.117

t = 8 9 10 11 12 13 14 15

y(t)= 0.05 0,04 0.046 0.022 0.036 0.021 0.018 0.016

Three following weighing schemes were adopted and the error
mean squares are as below :

Weighing Scheme Error Mean Square

Equal weights 0.000,351,61

Weights W{aa*+^ 0.000,243,71

Weights )f<a 1y(i) | 0.000,121,35

A reduction in error mean squares varying from 31% to 65% is
accomplished by choosing appropriate antitonic weights.

Example 5.3

Astudy was undertaken by Galambos and Cornell[3] to develop
a mathematical model to describe sulphate metabolism humans.
The data given in Table 3 gives proportions of radioactive counts of
blood at various times in hours following the injection.
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table 3

Data on Proportions y; of Radioactive Tracer at
Various Times tj

i = 2 3 4 5 6 _ 7 8 9

ii = 2 3 5 8 12 24 48 72

Vi = 0.84 0.79 0.64 0.55 0.44 0,27 0.12 0.06

Tiie model given in (1.2) with m=2 was fitted with three different
weighing schemes and the results obtained are as below :

Weighing Scheme Error Mean Squares

Equal Weights 0.000,819,33

Weights aa'+i 0.000,115.73

Weights Wia jyii 0.000,053,29

As is clear from the above figures, a considerable reduction in
error mean squares is accomplished by choosingappropriateantitonic
weights.

If errors €(0 are assumed to be independent with unequal
variances In the usual least squares analysis, we minimize

rXO-Ej(r)
...(5.2)

that is, the weights Wt are t=0, 1, 2, ..., n. In case of equal

variance the choice of antitonic weights is motivated by the index
of coefficient of variation, in this case the choice of

t;)kes care of this fact and no new scheme of weights is proposed.

6. Summary

This paper describes a technique for analysing data of decay-type
with order restrictions with special reference to the use of tracers in
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biological systems. The method antitonizes the basic estimates.
Several weighing schemes aie examined for estimating the non-linear
and the linear parameters both on real and simulated data.
Considerable improvement in estimates is found by this technique in
both situations.
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